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1 Introduction

Many extensions of Propositional Linear Temporal Logic (PLTL) are pro-
posed with the goal of verifying infinite-state systems whose formulae may
include arithmetic constraints belonging to a specific constraint system [3,
6]. Among these, CLTL (Counter LTL) extends Propositional LTL with fu-
ture operators (PLTL) adding subformulae with Difference Logic (DL) con-
straints. Unfortunately, this logic is shown to be undecidable. However, many
infinite-state systems can be effectively represented by counters automata
enjoying decidability of model checking problem for safety and reachabil-
ity properties, e.g., by constraining the control graph of the automata to be
flat [4]. Properties are defined by means of Presburger formulae and then
they do not describe any temporal behavior. Their verification is realized by
exploiting the equivalence with flat counters automata. An alternative ap-
proach [5] exploits a reduction of infinite BMC to a satisfiability problem
of Boolean constraints formulae. By translating LTL formulae into a corre-
sponding Büchi automaton, the BMC problem is reduced to the satisfiability
of a mixed arithmetic-Boolean formula. In [2] we defined CLTLB(D), which
is an extension of PLTLB (PLTL with Both future and past operators), allow-
ing arithmetic constraints belonging to a generic constraint system D , and
then we considered the Bounded Reachability Problem (BRP) for arithmetic
systems. To cope with undecidability we introduced suitable assumptions
concerning the structure of models without any syntactic restrictions on for-
mulae. Models only consider partial valuations of arithmetic variables: the
satisfiability of CLTLB(D) then turns to be decidable, provided that the con-
straint system has a decidable decision procedure. The BRP for CLTLB(D)
can be decided by showing its equivalence to the satisfiability of CLTLB(D)
formulae over partial valuations. Finally, we implemented the decision pro-
cedure in a BRP checker by using SMT-solvers and we used it in a practical
application of Service Oriented engineering [1].

? This extended abstract summarize results presented in a joint work with Matteo Rossi, Matteo
Pradella, Angelo Morzenti and Pierluigi San Pietro [2].



2 A Temporal Logic over Constraint Systems

Let V be a set of variables; a constraint system is a relational structure
D = 〈D,Π〉 where D is a set and Π is a family of relations on D. An atomic
D-constraint is a term of the form R(x1, . . . ,xn), where R is an n-ary relation
in Π and x1, . . . ,xn are variables. A D-valuation is a mapping v : V → D;
a constraint is satisfied by a D-valuation v, written v |= R(x1, . . . ,xn), if
(v(x1), . . . ,v(xn)) ∈ R. Let AP be a set of atomic propositions; the syntax
of a CLTLB(D) formula φ is defined as follows:

φ := p | R(ϕ1, . . . ,ϕn) | φ∧φ | ¬φ | Xφ | Yφ | φUφ | φSφ

ϕ := x | Xϕ | Yϕ
(1)

where p∈ AP, x∈V , X and Y are the usual “next” and “previous” operators,
U and S are the usual “until” and “since” operators and R ∈Π. Each formula
α is called an arithmetic temporal term (a.t.t.); its depth |α| is recursively
defined as: |X(α)| = |α|+ 1, |Y(α)| = |α| − 1 with |x| = 0. We define also
the “look-forwards” dφex (resp. “look-backwards” bφcx) of φ relatively to
x as the maximum (resp. minimum) depth of all a.t.t.’s occurring in φ in
which x appears (this definition naturally extends to set of formulae or set
of variables). The semantics of a formula φ of CLTLB(D) is defined w.r.t. a
linear time structure πσ = (S,s0, I,π,σ,L), where S is a set of states, s0 is the
initial state, I : { j | bφc ≤ j≤−1}×V →D is an assignment, π ∈ s0Sω is an
infinite path, σ : N×V → D is a sequence of D-valuations and L : S→ 2AP

is a labeling function. Function I defines the valuation of variables for each
time instant in { j | bφc ≤ j≤−1}, i.e., for time instants before 0; this way σ

can be extended to a.t.t.’s. Indeed, if α is an a.t.t., x is the variable in α, i ∈N
and σi(x) is a shorthand for σ(i,x), then:

σ
i(ϕ) =

{
σi+|ϕ|(x), if i+ |ϕ| ≥ 0;
I(i+ |ϕ|,x), if i+ |ϕ|< 0.

(2)

The semantics of a CLTLB(D) formula φ at instant i ∈N over a linear struc-
ture πσ is recursively defined as in the LTL and it extends to relations, in-
cluding a.t.t.’s α, as follows:

π
i
σ |= R(α1, . . . ,αn)⇔ (σi+|α1|(xα1), . . . ,σ

i+|αn|(xαn)) ∈ R,

where xαi is the variable that appears in αi. The semantics of φ is well de-
fined, as any valuation σi is defined for all i≥ bφc, because of assignment I.
A formula φ ∈ CLTLB(D) is satisfiable if it has a model, i.e., a linear time
structure πσ, such that π0

σ |= φ.



3 (Un)decidability of CLTLB(D)

By exploiting well-know properties of PLTLB, we proved the equivalence of
CLTLB(D) to CLTL(D) w.r.t. initial equivalence obtaining the undecidabil-
ity of CLTLB(D) for a large class of constraint systems. Two CLTLB for-
mulae φ,ψ are globally (resp. initially) equivalent if πi

σ |= φ⇔ πi
σ |= ψ (resp.

π0
σ |= φ⇔ π0

σ |= ψ) for all linear-time structures πσ and for all i∈N. In [7] is
proved that any PLTLB formula is globally equivalent to a separated PLTLB
formula, i.e., a Boolean combination of formulae containing either the strict
version of “until” or “since”, but not both. Since this theorem preserves all
semantic properties, it extends also to the case of CLTLB(D), provided that
each arithmetic constraint is accounted as a propositional letter.

Theorem 1. Any CLTLB(D) formula is initially equivalent to a CLTL(D)
formula, while the two logics are not globally equivalent. Moreover, if D =
〈D,Π〉 is a constraint system where Π contains equality and a binary relation
R such that (D,R) is a DAG; then satisfiability of CLTLB(D) is undecidable.

Nevertheless, we can prove the decidability for the satisfiability problem in
CLTLB(D) for a suitable restriction of the semantics.

Definition 1. Let φ be a CLTLB(D) w.f.f. and k ∈ N, then a k-partial D-
valuation σk for φ is a relation in {i∈Z | i≥bφc}×V×D with the condition
that for each variable x in φ, its restriction over {i ∈ Z | bφcx ≤ i ≤ k +
dφex}×{x}×D is a function from {i ∈ Z | bφcx ≤ i≤ k + dφex}×{x} to D.

Informally, σk defines a unique value for each counter x from 0 up to the
bound k by means of boundaries conditions (for bφcx ≤ i < 0 and k < i ≤
k + dφex), and it accounts for relations over infinite, even periodic, paths,
after k. For the case of k-partial D-valuation one can define a semantics
of CLTLB(D) formulae. It coincides with the semantics of the (full) D-
valuations except for the case of arithmetic relations R; namely, if xα j is
the variable that appears in α j and ȳ = (y1, . . . ,yn):

π
i
σk
|= R(α1, . . . ,αn)⇔∀ȳ

(
n∧

j=1

(i+ |α j|,xα j ,y j) ∈ σk⇒ ȳ ∈ R

)
. (3)

Theorem 2. The satisfiability of a CLTLB(D) formula φ over k-partial D-
valuations is decidable when D is decidable.

4 Bounded Reachability Problem

By using a suitable bounded semantics, i.e., a semantics for formulae on fi-
nite structures, we defined the Bounded Reachability Problem. Let k > 0, let



φ be a CLTLB(D) formula and let σ̂k : {i∈Z | bφcx ≤ i≤ k+dφex}×{x}→
D , for each x ∈ V , be a local sequence of assignments to variables: to cor-
rectly define the value of all a.t.t’s between instants 0 and k, values of some
variables before 0 and after k are defined. Although σ̂k considers the value
of counters only for a fixed number of steps, counting mechanisms of D ,
if defined, are not altered along finite paths by imposing periodicity of val-
ues of variables; and all relations are still considered over infinite, possibly
periodic, paths. This allows us to define a complementary approach to the
one of [5]: any periodic behavior which induces a finite, even periodic, pre-
fix of values of variables ruled by the counting mechanism and satisfying a
CLTLB(D) formula, can be represented. Arithmetic variables varying over
a bounded set may still be represented by its Boolean representation and
be part of the propositional infinite paths. Formally, let π ∈ S+ be a finite
path. A cyclic finite path (usvs, for some s ∈ S, u,v ∈ S∗) can be consid-
ered a finite representation of an infinite one, e.g., u(sv)ω. If π is cyclic, then
a bounded semantics for φ over π and a local assignment σ̂k is defined as
(3), by replacing σk with σ̂k and π with u(sv)ω. If π is not cyclic, instead,
the semantics of each relation R is, for 0 ≤ i ≤ k: πi

σ̂k
|=k R(α1, . . . ,αn)⇔

(σ̂i+|α1|
k (xα1), . . . , σ̂

i+|αn|
k (xαn)) ∈ R. Then we have:

Theorem 3. For every CLTLB(D) formula φ, if there exist k > 0, a finite
path π of length k and a local assignment σ̂k such that πσ̂k

|=k φ, then φ is
satisfiable over k-partial D-valuations.
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